Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 17(1): 106, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439081

ABSTRACT

BACKGROUND: Although whole-genome sequencing (WGS) is the preferred genotyping method for most genomic analyses, limitations are often experienced when studying genomes characterized by a high percentage of repetitive elements, high linkage, and recombination deserts. The Asian tiger mosquito (Aedes albopictus), for example, has a genome comprising up to 72% repetitive elements, and therefore we set out to develop a single-nucleotide polymorphism (SNP) chip to be more cost-effective. Aedes albopictus is an invasive species originating from Southeast Asia that has recently spread around the world and is a vector for many human diseases. Developing an accessible genotyping platform is essential in advancing biological control methods and understanding the population dynamics of this pest species, with significant implications for public health. METHODS: We designed a SNP chip for Ae. albopictus (Aealbo chip) based on approximately 2.7 million SNPs identified using WGS data from 819 worldwide samples. We validated the chip using laboratory single-pair crosses, comparing technical replicates, and comparing genotypes of samples genotyped by WGS and the SNP chip. We then used the chip for a population genomic analysis of 237 samples from 28 sites in the native range to evaluate its usefulness in describing patterns of genomic variation and tracing the origins of invasions. RESULTS: Probes on the Aealbo chip targeted 175,396 SNPs in coding and non-coding regions across all three chromosomes, with a density of 102 SNPs per 1 Mb window, and at least one SNP in each of the 17,461 protein-coding genes. Overall, 70% of the probes captured the genetic variation. Segregation analysis found that 98% of the SNPs followed expectations of single-copy Mendelian genes. Comparisons with WGS indicated that sites with genotype disagreements were mostly heterozygotes at loci with WGS read depth < 20, while there was near complete agreement with WGS read depths > 20, indicating that the chip more accurately detects heterozygotes than low-coverage WGS. Sample sizes did not affect the accuracy of the SNP chip genotype calls. Ancestry analyses identified four to five genetic clusters in the native range with various levels of admixture. CONCLUSIONS: The Aealbo chip is highly accurate, is concordant with genotypes from WGS with high sequence coverage, and may be more accurate than low-coverage WGS.


Subject(s)
Aedes , Mosquito Vectors , Humans , Animals , Genotype , Mosquito Vectors/genetics , Heterozygote , Aedes/genetics
2.
Elife ; 122023 03 10.
Article in English | MEDLINE | ID: mdl-36897062

ABSTRACT

The globally invasive mosquito subspecies Aedes aegypti aegypti is an effective vector of human arboviruses, in part because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti relies on human-stored water for breeding. Here, we use whole-genome cross-coalescent analysis to date the emergence of human-specialist populationsand thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of specialists out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5000 years ago, at the end of the African Humid Period-a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities. The characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi and Ouagadougou suggests the change in behavior occurred during rapid urbanization over the last 20-40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades.


Subject(s)
Aedes , Animals , Humans , Aedes/genetics , Mosquito Vectors , Ecosystem , Urbanization , Cities
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607949

ABSTRACT

Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.


Subject(s)
Aedes/microbiology , Arbovirus Infections/prevention & control , Infertility, Male , Mosquito Control/methods , Wolbachia/metabolism , Aedes/physiology , Animals , Arbovirus Infections/transmission , Arboviruses , Australia , Biological Control Agents , Female , Humans , Male , Mosquito Vectors/microbiology , Queensland
5.
J Med Entomol ; 58(6): 2425-2431, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34240181

ABSTRACT

With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera: Culicidae) and Aedes albopictus (Skuse, Diptera: Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system.


Subject(s)
Aedes , Mosquito Control , Mosquito Vectors , Animals , Male , Papua New Guinea , Queensland , Sound
7.
Insects ; 12(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925425

ABSTRACT

Effective surveillance of Aedes aegypti (Linnaeus, Diptera: Culicidae) is critical to monitoring the impact of vector control measures when mitigating disease transmission by this species. There are benefits to deploying male-specific traps, particularly when a high level of catch-specificity is desired. Here, the rationale behind the developmental process of an entirely new trap which uses a sound lure to capture male Ae. aegypti, the male Aedes sound trap (MAST), is presented as a target product profile with findings from developmental trials of key trap components and performance. Trial results suggest that the presence of a black base associated with the trap influenced male catches as did variations in size of this base, to a degree. Trap entrance shape didn't influence catch rates, but entrance size did. No significant differences in catch rates were found when sound lures were set to intermittent or continuous playbacks, at volumes between 63-74 dB or frequencies of 450 Hz compared to 500 Hz. Additionally, adult males aged 3 days post-eclosion, were less responsive to sound lures set to 500 Hz than those 4 or 6 days old. Lastly, almost no males were caught when the MAST directly faced continual winds of 1.5 ms-1, but males were captured at low rates during intermittent winds, or if the trap faced away from the wind. The developmental process to optimising this trap is applicable to the development of alternate mosquito traps beyond Aedes sound traps and provides useful information towards the improved surveillance of these disease vectors.

8.
PLoS Negl Trop Dis ; 15(2): e0009061, 2021 02.
Article in English | MEDLINE | ID: mdl-33630829

ABSTRACT

Aedes aegypti and Aedes albopictus vector dengue, chikungunya and Zika viruses. With both species expanding their global distributions at alarming rates, developing effective surveillance equipment is a continuing priority for public health researchers. Sound traps have been shown, in limited testing, to be highly species-specific when emitting a frequency corresponding to a female mosquito wingbeat. Determining male mosquito capture rates in sound traps based on lure frequencies in endemic settings is the next step for informed deployment of these surveillance tools. We field-evaluated Male Aedes Sound Traps (MASTs) set to either 450 Hz, 500 Hz, 550 Hz or 600 Hz for sampling Aedes aegypti and/or Aedes albopictus and compared catch rates to BG-Sentinel traps within Pacific (Madang, Papua New Guinea) and Latin American (Molas, Mexico and Orange Walk Town, Belize) locations. MASTs set to 450-550 Hz consistently caught male Ae. aegypti at rates comparable to BG-Sentinel traps in all locations. A peak in male Ae. albopictus captures in MASTs set at 550 Hz was observed, with the lowest mean abundance recorded in MASTs set to 450 Hz. While significantly higher abundances of male Culex were sampled in MASTs emitting lower relative frequencies in Molas, overall male Culex were captured in significantly lower abundances in the MASTs, relative to BG-Sentinel traps within all locations. Finally, significant differences in rates at which male Aedes and Culex were positively detected in trap-types per weekly collections were broadly consistent with trends in abundance data per trap-type. MASTs at 550 Hz effectively captured both male Ae. aegypti and Ae. albopictus while greatly reducing bycatch, especially male Culex, in locations where dengue transmission has occurred. This high species-specificity of the MAST not only reduces staff-time required to sort samples, but can also be exploited to develop an accurate smart-trap system-both outcomes potentially reducing public health program expenses.


Subject(s)
Aedes , Mosquito Control/instrumentation , Mosquito Control/methods , Mosquito Vectors , Sound , Aedes/virology , Animals , Female , Latin America , Male , Mosquito Vectors/virology , Pacific Islands , Species Specificity , Zika Virus , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
9.
J Med Entomol ; 58(1): 408-415, 2021 01 12.
Article in English | MEDLINE | ID: mdl-32740655

ABSTRACT

As Aedes aegypti (Linnaeus, Diptera: Culicidae) expands its global distribution and vectors a range of debilitating arboviruses there is an increased need for enhanced mosquito surveillance. Consequently, we developed a Male Aedes Sound Trap (MAST) that requires minimal power and is highly species-specific. Two different versions of the MAST were developed, one that uses synthetic pyrethroid to kill captured mosquitoes (MAST Spray) and another which has an internal divider to create a killing chamber in which a sticky panel can be placed to capture mosquitoes (MAST Sticky). We compared weekly capture rates of male Ae. aegypti and bycatch from the two MAST versions to those from BG-Sentinel (BGS) traps and Sound-producing BG-Gravid Aedes Traps (SGATs) throughout Cairns, northern Australia. Weekly mean male Ae. aegypti catches did not significantly differ between trap types. However, the rate of positive weekly detections of male Ae. aegypti was lower for the MAST Sticky than the other three trap types. The MASTs sampled significantly fewer mosquitoes other than male Ae. aegypti, than either the BGS trap or the SGAT. Also, the MASTs and SGATs all caught significantly less non-Culicidae bycatch than the BGS traps. Consequently, we have developed a versatile male Ae. aegypti trap which is potentially of great benefit to Ae. aegypti surveillance programs.


Subject(s)
Aedes , Mosquito Control/methods , Mosquito Vectors , Sound , Animals , Male , Mosquito Control/instrumentation , Queensland
10.
Genome Biol ; 21(1): 215, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32847630

ABSTRACT

BACKGROUND: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae. albopictus genome is essential to develop new approaches that involve genetic manipulation of mosquitoes. RESULTS: We use long-read sequencing methods and modern scaffolding techniques (PacBio, 10X, and Hi-C) to produce AalbF2, a dramatically improved assembly of the Ae. albopictus genome. AalbF2 reveals widespread viral insertions, novel microRNAs and piRNA clusters, the sex-determining locus, and new immunity genes, and enables genome-wide studies of geographically diverse Ae. albopictus populations and analyses of the developmental and stage-dependent network of expression data. Additionally, we build the first physical map for this species with 75% of the assembled genome anchored to the chromosomes. CONCLUSION: The AalbF2 genome assembly represents the most up-to-date collective knowledge of the Ae. albopictus genome. These resources represent a foundation to improve understanding of the adaptation potential and the epidemiological relevance of this species and foster the development of innovative control measures.


Subject(s)
Aedes/genetics , Arboviruses/genetics , Genome , Mosquito Vectors/genetics , Aedes/immunology , Aedes/virology , Animals , Chromosome Mapping , Chromosomes , Genome Size , Immunity , Insect Vectors , Mosquito Vectors/immunology , Mosquito Vectors/virology , RNA, Small Interfering/genetics , Transcriptome
12.
Curr Biol ; 30(18): 3570-3579.e6, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32707056

ABSTRACT

The majority of mosquito-borne illness is spread by a few mosquito species that have evolved to specialize in biting humans, yet the precise causes of this behavioral shift are poorly understood. We address this gap in the arboviral vector Aedes aegypti. We first collect and characterize the behavior of mosquitoes from 27 sites scattered across the species' ancestral range in sub-Saharan Africa, revealing previously unrecognized variation in preference for human versus animal odor. We then use modeling to show that over 80% of this variation can be predicted by two ecological factors-dry season intensity and human population density. Finally, we integrate this information with whole-genome sequence data from 375 individual mosquitoes to identify a single underlying ancestry component linked to human preference. Genetic changes associated with human specialist ancestry were concentrated in a few chromosomal regions. Our findings suggest that human-biting in this important disease vector originally evolved as a by-product of breeding in human-stored water in areas where doing so provided the only means to survive the long, hot dry season. Our model also predicts that the rapid urbanization currently taking place in Africa will drive further mosquito evolution, causing a shift toward human-biting in many large cities by 2050.


Subject(s)
Aedes/growth & development , Climate , Genome, Insect , Insect Bites and Stings/epidemiology , Insect Proteins/genetics , Mosquito Vectors/growth & development , Urbanization , Aedes/genetics , Africa/epidemiology , Animals , Cities , Female , Genetics, Population , Humans , Male , Mosquito Vectors/genetics , Population Density
13.
PLoS Negl Trop Dis ; 14(6): e0008367, 2020 06.
Article in English | MEDLINE | ID: mdl-32530921

ABSTRACT

As Aedes aegypti continues to expand its global distribution, the diseases it vectors (dengue, Zika, chikungunya and yellow fever) are of increasing concern. Modern efforts to control this species include "rear and release" strategies where lab-reared mosquitoes are distributed throughout the landscape to replace or suppress invasive populations. These programs require intensive surveillance efforts to monitor their success, and the Biogents Sentinel (BGS) trap is one of the most effective tools for sampling adult Ae. aegypti. BGS trap catches can be highly variable throughout landscapes, so we investigated the potential impacts of environmental factors on adult Ae. aegypti capture rates during a "rear and release" program in California to better understand the relative contributions of true variability in population density across a landscape and trap context. We recorded male and female Ae. aegypti catches from BGS traps, with and without CO2, throughout control sites where no mosquitoes were released and in treatment sites where males infected with Wolbachia were released. BGS trap catches were positively influenced by higher proportions of shade or bushes in the front yard of the premises as well as the presence of potential larval habitats such as subterranean vaults. In contrast, an increase in residential habitat within a 100 m radius of trap locations negatively influenced BGS trap catches. For male Ae. aegypti, increased visual complexity of the trap location positively influenced capture rates, and the presence of yard drains negatively affected catch rates in control sites. Lastly, for BGS traps using CO2, higher catch rates were noted from traps placed greater than one meter from walls or fences for both male and female mosquitoes. These results have important implications for surveillance programs of Ae. aegypti throughout the Californian urban environment including adult monitoring during "rear and release" programs.


Subject(s)
Aedes/physiology , Environmental Monitoring , Mosquito Vectors/physiology , Animals , California , Ecosystem , Female , Housing , Male , Mosquito Control , Wolbachia
14.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Article in English | MEDLINE | ID: mdl-32265562

ABSTRACT

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Subject(s)
Aedes/microbiology , Aedes/physiology , Mosquito Control/methods , Mosquito Vectors/microbiology , Mosquito Vectors/physiology , Wolbachia/physiology , Aedes/growth & development , Animal Migration , Animals , California , Female , Larva/growth & development , Larva/microbiology , Larva/physiology , Male , Mosquito Control/statistics & numerical data , Mosquito Vectors/growth & development , Population Dynamics , Sex Characteristics
15.
PLoS Negl Trop Dis ; 13(12): e0007919, 2019 12.
Article in English | MEDLINE | ID: mdl-31790401

ABSTRACT

Current knowledge of the piRNA pathway is based mainly on studies on Drosophila melanogaster where three proteins of the Piwi subclade of the Argonaute family interact with PIWI-interacting RNAs to silence transposable elements in gonadal tissues. In mosquito species that transmit epidemic arboviruses such as dengue and chikungunya viruses, Piwi clade genes underwent expansion, are also expressed in the soma and cross-talk with proteins of recognized antiviral function cannot be excluded for some Piwi proteins. These observations underscore the importance of expanding our knowledge of the piRNA pathway beyond the model organism D. melanogaster. Here we focus on the emerging arboviral vector Aedes albopictus and we couple traditional approaches of expression and adaptive evolution analyses with most current computational predictions of protein structure to study evolutionary divergence among Piwi clade proteins. Superposition of protein homology models indicate possible high structure similarity among all Piwi proteins, with high levels of amino acid conservation in the inner regions devoted to RNA binding. On the contrary, solvent-exposed surfaces showed low conservation, with several sites under positive selection. Analysis of the expression profiles of Piwi transcripts during mosquito development and following infection with dengue serotype 1 or chikungunya viruses showed a concerted elicitation of all Piwi transcripts during viral dissemination of dengue viruses while maintenance of infection relied on expression of primarily Piwi5. Opposite, establishment of persistent infection by chikungunya virus is accompanied by increased expression of all Piwi genes, particularly Piwi4 and, again, Piwi5. Overall these results are consistent with functional specialization and a general antiviral role for Piwi5. Experimental evidences of sites under positive selection in Piwi1/3, Piwi4 and Piwi6, that have complex expression profiles, provide useful knowledge to design tailored functional experiments.


Subject(s)
Aedes/classification , Aedes/genetics , Argonaute Proteins/genetics , Genetic Variation , Insect Proteins/genetics , Mosquito Vectors/classification , Mosquito Vectors/genetics , Animals , Argonaute Proteins/biosynthesis , Conserved Sequence , Evolution, Molecular , Female , Gene Expression Profiling , Genotype , Male
16.
Nature ; 563(7732): 501-507, 2018 11.
Article in English | MEDLINE | ID: mdl-30429615

ABSTRACT

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Subject(s)
Aedes/genetics , Arbovirus Infections/virology , Arboviruses , Genome, Insect/genetics , Genomics/standards , Insect Control , Mosquito Vectors/genetics , Mosquito Vectors/virology , Aedes/virology , Animals , Arbovirus Infections/transmission , Arboviruses/isolation & purification , DNA Copy Number Variations/genetics , Dengue Virus/isolation & purification , Female , Genetic Variation/genetics , Genetics, Population , Glutathione Transferase/genetics , Insecticide Resistance/drug effects , Male , Molecular Sequence Annotation , Multigene Family/genetics , Pyrethrins/pharmacology , Reference Standards , Sex Determination Processes/genetics
17.
Am J Hum Genet ; 101(5): 752-767, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29100088

ABSTRACT

The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself.


Subject(s)
Adaptation, Physiological/genetics , Altitude Sickness/genetics , Cardiovascular System/physiopathology , Selection, Genetic/genetics , Aged , Aged, 80 and over , Altitude , Female , Genome-Wide Association Study/methods , Haplotypes/genetics , Heart Failure/genetics , Humans , Hypoxia/genetics , Male , Middle Aged , Polycythemia/genetics , Polymorphism, Single Nucleotide/genetics
19.
Genome Res ; 27(6): 1029-1038, 2017 06.
Article in English | MEDLINE | ID: mdl-28385712

ABSTRACT

The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon, are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus, indica, and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica, possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow.


Subject(s)
Domestication , Gene Flow , Genome, Plant , Hybridization, Genetic , Oryza/genetics , Humans , Oryza/classification , Phylogeny , Plant Breeding , Selection, Genetic
20.
BMC Biol ; 15(1): 16, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28241828

ABSTRACT

BACKGROUND: The mosquito Aedes aegypti is the main vector of dengue, Zika, chikungunya and yellow fever viruses. This major disease vector is thought to have arisen when the African subspecies Ae. aegypti formosus evolved from being zoophilic and living in forest habitats into a form that specialises on humans and resides near human population centres. The resulting domestic subspecies, Ae. aegypti aegypti, is found throughout the tropics and largely blood-feeds on humans. RESULTS: To understand this transition, we have sequenced the exomes of mosquitoes collected from five populations from around the world. We found that Ae. aegypti specimens from an urban population in Senegal in West Africa were more closely related to populations in Mexico and Sri Lanka than they were to a nearby forest population. We estimate that the populations in Senegal and Mexico split just a few hundred years ago, and we found no evidence of Ae. aegypti aegypti mosquitoes migrating back to Africa from elsewhere in the tropics. The out-of-Africa migration was accompanied by a dramatic reduction in effective population size, resulting in a loss of genetic diversity and rare genetic variants. CONCLUSIONS: We conclude that a domestic population of Ae. aegypti in Senegal and domestic populations on other continents are more closely related to each other than to other African populations. This suggests that an ancestral population of Ae. aegypti evolved to become a human specialist in Africa, giving rise to the subspecies Ae. aegypti aegypti. The descendants of this population are still found in West Africa today, and the rest of the world was colonised when mosquitoes from this population migrated out of Africa. This is the first report of an African population of Ae. aegypti aegypti mosquitoes that is closely related to Asian and American populations. As the two subspecies differ in their ability to vector disease, their existence side by side in West Africa may have important implications for disease transmission.


Subject(s)
Aedes/genetics , Disease Vectors , Genomics , Adaptation, Physiological/genetics , Africa, Western , Americas , Animal Migration , Animals , Asia , Base Sequence , Exome/genetics , Genetic Variation , Genetics, Population , Genome, Insect , Humans , Phylogeny , Population Density , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...